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Introduction

For the third quarter of this research contract, we are going to report progress on

the following four Tasks (as described in the contract):

2. Feature Calculation;

3. Membership Calculation;

4. Clustering Methods (including initial experiments on pose estimation);

5. Acquisition of images (including camera calibration information for

digitization of model).

The report, as we have done in the past, consists of "stand alone" sections,

describing the activities in each task. We would like to highlight the fact that during this

quarter, we believe that we have made a major breakthrough in the area of fuzzy clustering.

We have discovered a method to remove the probabilistic constraint that the sum of the

memberships across all classes must add up to 1 (as in the fuzzy c-means). A paper,

describing this approach is included (it is under review for the IEEE Transactions on Fuzzy

Systems).



Feature Calculation

We have acquired images, digitized from video tape, and have begun the process of

feature extraction and segmentation. We have concentrated on texture-based features and

edge based features. On subsequent pages, we describe the 14 texture features which are

calculate from the gray-tone spatial dependence matrices. We then show a typical image of

the shuttle, with earth as background followed by images of various texture features

extracted from the image. It is obvious from the resultant images that some of the features

are good discriminators while others are quite poor. Following those images, we show the

results of segmenting this image using the "threshold unit" approach described in the

second quarter report.



The gray-tone spatial dependence matrix P(i, j) is computed from a window with

a size of L u x Lx. Denote d be the distance between the two pixels in the window, then

we have,

P(i,j,d,O °) = #{((k, l), (m,n)) e (L_ x Lz) x (Ly x Lz)lk- m = O,

If- n I = d,I(k,l) = i.I(m,n) = j}

P(i,j,d, 45°) = #{((k,l),(m,n)) • (Ly x L_:)x (Lu x Lz)[k-m = d,

l- n = -d or (k - m - -d,l- n -- d),I(k,l) - i.I(m,n) = j}

P(i,j,d, 90°) = #{((k,l),(m,n)) • (Ly x L=) x (Ly x L::)llk- m I = d,

l- ,_= o,1(k,t)= _x(m,n)= j}

P(i,j,d, 135°) = #{((k,l),(m,n)) • (L_ × L_.) × (Ly × L..)lk- m = d,

l - n = d or (k- m = -d,l - n = -d),I(k,l) = i.I(m,n) = j}

where # denotes the number of elements in the set.

The following notations are used to compute the 14 texture features.

Notation

p(i,j)

i

pz(i)

N_

and
J

Pu(J)

(i,j)th entry in a normalized gray-tone spatial-dependence matrix,

= P(i,j)/R. R is a normalization factor.

ith entry in the marginal-probability matrix obtained by summing the rows

ofp(i,j). = _g_l P(i,j).

Number of distinct gray levels in the quantized image.
Ng N_

and _-_, respectively.
i=1 /=1

Ng

=
i=l

N 9 Ng

px+v(k) = _ _-_.p(i,j),
i_1 j=l

i+j=k

k = 2,3,...,2_,_.



Ng Ng

p__u(k) = _ Ep(i,j),

i=1 j=l

Ii-jl=k

k = 0,1,.-.,Ng- 1.

The 14 texture features are defined as following.

1) Angular Second Moment:

2) Contrast:

3) Correlation:

i j

N a --1

n_O

E _p(i,j) - #_l_u
i j

la=
(7 x a N

where #_, _u, a_:, and au are the means and standard deviations of p_: and pu.

4) Sum of Squares: Variance

i 1

5) Inverse Difference Moment:

6) Sum Average:

7) Sum Variance:

8) Sum Entropy:

1

f5 = E E 1 + (i- j)2p(i,J).
i j

2Ng

]'6 = 2 ip_+y(i).
i=2

2N 9

f7 = E(i- ]'_)2P_+u(i).
i=2

2Ng

i----2



9) Entropy:

10) Difference Variance:

f9 = E E l°g(p(i'j))"

i j

flo = variance of Px-v

11) Difference Entropy:

N o-|

fn =- E Pz-Y(i)l°g{P_:-u(i)}"
i=0

12), 13) Information Measures of Correlation:

HXY - HXY1

f12 = max{HX, HY}"

f13 = (I -exp[-2.0(HXY2- HXY)]) W2.

HXY = - E E p(i'j)l°g(p(i'j))"

i i

where HX and HY are entropies of Px and Pu, and

HXY 1 = - E E log {Px (i)pu(j) }

i j

HXY2 = - E E P_(i)pu(J) l°g{px(i)pu(J) }"

i j

14) Maximal Correlation Coefficient:

f,a = (Second largest eigenvalue of Q)1/2

where

Q(i,j) = E p(i,k)p(j,k)
k p_:(i)py(k)



(a) (b)

-j

(c) (d)

/a/ original imageentropy
{ o homogeneity
{_ angular second moment



(a) (b)

(c) (d)

/al contrastsum of squares lb/correlationsum average



(a) (b)

(c) (d)

I_I_umv_ncedifference variance Ib/sum entr-opvdifference dntropy



(a) (b)

(c)

!} information measure of correlation, method 1
information measure of correlation, method 2
maximal correlation coefficient



Calculation of Membership Functions

Our work in this area has progressed nicely. We have designed and implemented

numerous algorithms to generate membership values from a set of training data using

histograms, results of fuzzy clustering, and heuristic definitions. We have also made

progress in the transformation of "probability density functions" into possibility

distributions for use in assigning membership values to individual points. The following

report describes three methods of converting histograms of features into possibility

distributions from which we can calculate membership function values for segmentation

and recognition. The last example demonstrates these techniques on the _homogeneity"

feature for the shuttle and background on our sample image.



M¢_hgds for Generating Membership Functions :

Fuzzy set theory has been used extensively in the literature for decision making,

particularly in situations involving uncertain, vague and imprecise data supplied by

heterogeneous sources. Many of these approaches involves the use of memberships ( or

degree of satisfaction of criteria). Thus membership functions play a crucial role in fuzzy

set theoretic decision making.

There are three general approaches to constructing membership functions: i)

heuristic methods ii) clustering methods, and iii) histogram-based methods. Heuristic

methods assume that the shape of the membership functions is known(e.g, trapezoidal,

triangular, and Gaussian). Heuristic methods have been used very successfully in control

approaches. In computer vision, heuristic membership functions may be used to describe

certain relational notions (such as above, below) and certain properties (such as lightness or

darkness of a pixel value, position of a pixel, narrowness of a region). However, heuristic

methods are not sufficiently flexible if one is to construct the membership functions from

training data. This is because assumption on the shape of the membership function are too

limiting. In such cases, fuzzy clustering methods and histogram based methods are more

useful Clustering based methods use fuzzy clustering techniques to obtain a fuzzy partition

of the training data. The membership values generated by the fuzzy partition are used for

decision making. Several fuzzy clustering techniques exist in the literature, however, this

approach will not be discussed here. We now describe membership generation techniques

based on histograms of feature (training) data.

In image processing applications, histograms have been traditionally treated as

probability distributions. In pattern recognition, many methods exist for estmafing pdf's

from samples. Since probabilities represent relative frequencies, it is reasonable to assume

that it" we have a huge number of samples that represent the ensemble whose area has been

normalized to 1. Thus, methods that transform probabilities to possibilities (membership

values) can be used to generate membership functions from histograms. To our

knowledge, there are three ways to construct membership functions from given probability

density functions. All of these methods assume that we have probability density functions

at hand before these methods are applied, or we can approximate them as histograms.



Method1:

This method suggested by D. Dubios and H. Prade[1] is based on

probability/necessitymeasuretheories.

LetX= {xil i- 1..... n} to be a universe of discoures. The xi's are ordered such that
n

Pl 2 p2 >_..... _Pn ' where Pi = P([xi])' "IglPi =1 and P is a probability measure. Ail'-

denotes the set {xl, x2 ....... xi]. AO = 121by convention.

Definition 1. The degree of necessity of event A is the extra amount of probability of

elementary events in A over the amount of probability assigned to the most frequent

elementary event outside A. In order words

N(A) = Y_, max (pj - mar Pk , O) (1)
xjeA xk_ A

Proposition 1. The set function N satifies the following axioms:

N(_) = 0 ; N(X) = 1 (2)

VA,B X N(Ac3B) = min(N(A),N(B)) (3)

Definition 2. Viewing N(A) as the grade of impossibility of the opposite event ,4 we can

define the grade of possibility of A by

VA X FI(A)= 1-N(A) (4)

where N(A) is defined by (1)

Proposition 2. The set function//defined by (4) verifies the axioms.

I-1(_) = 0 ; FI(X ) = 1:

V A,B II(A_B) = mar(l-ICA), FI(B))

(5)

(6)



Hence/7 is a possibility measure in the sense of Zadeh.

Denoting, lri = Fl([xi}), we have n_A) = max _i
xi_A

so that/7 and N are completely specified through the possibility distribution [_i I i =

1..... n) which can be viewed as a normalized fuzzy set.

The Jri's are easily obtained from the pi's since

_i = 1- N(X- {xi)) = 1 - N(Ai-1)

i-1

= 1-/l(pj-Pi) for/> 1 (7)

n

and _rl = 1 (normalization). Using Z Pi = 1 we get
i=1

n

V i = l ....... n _ = ipi + Z pj (8)
j=i+l

The equation(8) gives us a way to generate membership functions from given probability

density functions.

It is easy to see from (8) that for i=1 ..... n-1

7ri - _+1 = i(pi-Pi+ l) (9)

and thus

_i = 7ri+1 ¢:_ Pi = Pi+l, _i > _ri+l ¢:_ pi> Pi+l

i.e., the possibility distribution and the probability density have the same shape.

Proposition 3. If the probability assignment p maps on the possibility distribution 7r via (8)

then

V A N(A) _< P(A) <-1-1(A )

Therefore, the possibility distribution they defined satisfies Zadeh's pr6_ability/possibility

consistency principle.



Proposition4. The possibility distribution 7ri is greateror equal to normalized

probabilitydistbution,thatis,

Pi
V i = 1 ....... n _ti >-plt=Pmax __/

n

proof" FromEq(8), lri = ipi + £, pj
j=i+l

consider that pl Pl. Pl_ n
-PT rq= -ff[tPi +pt j=_i+lPJ=ipi + Pl Z-ff: j=i+ l pj

Note that ipl

i n /1

2 Z ol and Pl Z
r, j=-ff_--i+ l pj > Z pjj=/,, j=i+1

Therfore, P!
Pi _i > lso, _i > Pi- - Pl

Experimental Results •

We applied this methodl to some simple pdfs, for example, linearily decresing,

triangle, trapezoid, and normal pdfs. As shown in figure 1-1, for the linear parts of Ixlfs

we have the corresponding possibility distribution in the form of quadratic equation as

expected. One might refer to Appendix A for the closed form solutions of possibility

distributions corresponding to these simple pdfs. The shape of possibility distribution for

a normal pdf is much similar to the original one.

We applied this to a homogeneity feature of a space shuttle image in Figure 2-1 Ca).

In this experiment, we constructed histograms of a object(shuttle) and a background by

sampling pixels from Figure 2-l(b), and smoothed histograms by a binomial window with

window size 11. Figure 2-2 shows that the smoothed histogrmas of object and

background, and their corresponding possibility distributions. Note that the possibility

distributions are computed from normalized histograms(i.e., pdfs).



Method2"

This methodsuggestedby Klir[2] is based on uncertainty measure in probability

and possibility theories. He claims that under the transformation, values Pi must

correspond to values ri for all i=1 ..... ,n by some appropriate scale and, in addition, the

amount of information should be preserved.

In other words, the total amount of uncertainty in the probability distribution must

be equal to the total amount of uncertainty in the possibility distribution.

Let p = (pl,p2 ........ Pn) and r = (rl,r2 ....... rn) denote, repectively, probability

and possitility distributions ( defined on a finite set X with n elements) that do not contain

zero elements and are ordered in such a way thatpi >-Pi+l and ri >-ri+l Vi=l,2 ....... n-1

n

Thatis, pi E (0,1], ri e (0,1] and Z pi = 1.
i=I

probabilistic measure of uncertainty is the well known shannon entropy.

n

H(p) = -iZ=lPi log2 Pi
(1)

In possibility theory, two type of uncertainty coexist, nonspecificity and discord ; their

measures are

n
i

N(r) = -i_=2Piri log2 T-1 (2)

n-1 n

D(r)=-iZ__ 1 (ri-ri+l)log2[1-i Z _]
j=-i + IJIJ- _

(3)

respectively.

Hence, the requirement that information be preserved by the transformation is expressed by

constraining the scaling between p and r by the equation.

H(p) = N(r)+D(r) (4)



Klir contendsthat log-interval scal transformation is the only one that exists for all

distributionsandis unique.

Its form is

ri = (pi/P l )a

where a is a positive constant determined by solving Eq (4) for given H(p).

From extensive computer experimentation, Klir conjectures that tx_ [0,1 ]. If the conjecture

is true, than ri >-Pi for all i=1 ..... n is guaranteed(probability-possibility consistency

principle).

Experimental Results:

We applied this method 2 to previously defined pdf's. The results are also shown in

figure 1-1. Our experiment shows that there are some cases where we may have ot>l for

the trapezoid and the normal pdf's.

The same homogeneity feature as used in method 1 was considered to compute the

possibility distributions and all results are summarized in Figure 2-2. One can easily notice

that the membership values computed by both methods (method 1 and 2) are quite similar.

Method 3:

The last method which we are investigating now is suggested by Civalar and

Trussel[3]. It is based on an optimization technique to fred optimal membership functions

from a given pdf. They claim that in order to define a reasonable membership function,

there are certaim conditions which can be imposed on the membership function to make the

set have properties consistent with the user's subjective judgement and the underlying pdf.

From a heuristic viewpoint, the elements which are most likely should have high

membership values, however, the possibility distribution should be as specific as

possibile. These requirements are quantitatively describved below:

1. E(m(x)l x is distributed according to the underlying pdf] _>c

where the confidence level c should be close to unity.

2. 0 _-V(x) _- 1



3. _l.t2(x)dx should be minimized to obtain a specific membership

function.

The optimal membership function defined by these condition can be derived using

constrainted optimization techniques. They found that the optimal membership function is

given by

3.p(x) if 7tp(x)<l
la(x) t 1 if 3,p(x)>_l

(1)

where p(x) is the pdf or its estimate derived form the histogram of the feature used for

defining the fuzzy set, and the constant -- is to be solved from

_'Xp('_)<lx P20])dvl + _,p(x)>1J" p2(n)drl - c = 0
(2)

A interesting result they found is that the membership function corresponding to Gaussian

with c = 1/q'2 is a normalized Gaussian function with the highest value equal to 1.



APPENDIX A.

Some simple pdf's and its closed form solution of corresponding possibility distributions.

1. Linearly decreasing case:

a

b
!

!

v

a-b i an-b
pi = [- _-1 + __f ]/c where c = n(a+b)/2

a-b , _2
_i - n(n_l)(a+b)( -t + i) + 1

2. Triangle case:

a

v

a _]/cPi = [--b i + for i is odd number.

a _(Pi = [--_ i +a]/c for i is even number where c = n-l).

2 ntn -
zri = - (n_1)2 + _ i + (n_1)2 for i is odd number.



3.Trapezoidcase•

h

/
c

b

v

_a n(b+ l )pi= [ - i +------_--]/d fori(2a+l)isoddnumber.

Pi = [ -_-_'-di + _----ba]/d for ice- a) is even number where d = (a+b)lv'2.

1 "2
tri - (b+a)(b.a)[-z + 2i - n 2 + 2bn] for i(>_a+l) is odd number.

Appendix A. Probability distributions and corresponding possibilities generated by D.

Dubios: Note thatplk and _'s are arranged in non-increasing order.
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Image Segmentation via Binary Encoding

1. Introduction

In this proposal, a binary encoding method is introduced for use in image

processing. In particular, the area of image segmentation. Given a 2 n gray scaled image that

consists of objects and background, each pixel value can be encoded by n bits that consists

of gray levels(eg., for an image that has 256 gray levels, 8 bits are needed) representing the

objects and background. Based on this representation, a boolean functionfconsisting of

minimum sums-of-productsfMSP) can be obtained by means of the Quine-McCluskey

tabular method to segment the objects from the background. Section 2 explains how this is

obtained in greater detail. The performance of this method is tested on various images,

which is shown in Section 3.

2. Binary encoding method

Given n binary valued inputs(Xl .... ,xn), there exits 2 n combinations of the input

variables. If we consider a binary output to represent the combinations of the input

variables, a minimum sums-of-products(MSP) functionfcan be obtained that describes the

output by means of he Quine-McCluskey tabular method. For purposes of image

segmentation, given a 2 n gray scaled image that consists of objects and background, the

gray levels can be encoded into n bits. If we consider the n bits as n input variables and the

output to be either objects or background, a function f that segments objects from the

background can be obtained by using the method described above. The coded inputs are

obtained shown by the table below.



graylevel

0

1

2f/

input variables

Xl "'" X_

0--.00

0.--0 1

1.-.1 1

The following Section shows various examples using the binary encoding method with

resulting segmented images.

3. Examples

Figure l(a) shows a 200x200 size image of the space shuttle in a background of

clouds. This image consists of 256 gray levels, constituting to 8 bit encoding. Our

objective is to segment the shuttle from its background using the binary encoding method

described in Section 2. For the training data, a window of size 20x20 is used to take coded

gray values from both the shuttle and background, constituting to 10% of the total image.

For the gray values that do not exist in either the shuttle or background, are considered as

"don't cares". For the gray values that are the same for both shuttle and background, they

are also considered as "don't cares". Letting the shuttle and background represent the

output value 1 and 0 respectively, the function f that segments the object from the

background resulted as follows:

f(xl .... ,xn) = _1-_2 + x2x3x4 +-'rlX3 + x4x5x6x7x8 + _3x5x6x7x8 +x2_6-r7

+ x2x3x6._7 + x2_'3x8 + XlX4X5x6 + XlX5X6X7X8 + XlX4X5x7 .

The remaining 90% of the image was used for testing and the resulting segmented image is

shown in Figure l(b) using the function f above. As expected, the results showed a poor



segmentationof the image.This isdueto thetrainingdatawhichconsistedof severalgray

levels thatwerethesamefor boththeshuttleandbackground.This problemcanalsoarise

in many other segmentationmethods.In order to improve the segmentation,several

featuresarecalculated.Figurel(c) showstheimageof the homogeneityfeatureand the

function f that segments the object from the background using this image resulted as

follows:

f(xl .... ,Xn) = Xl + x2x3x4xsx6 + x2_,3x5x-6_8 •

Figure l(d) shows a great improvement in the results using the homogeneity feature. Two

other features, namely, entropy and contrast, were calculated and their respective images

are shown in Figure 2(a) and Figure 2(c). The functions that segments the object from the

background using each corresponding image resulted as follows:

For the entropy feature,

f(xl ..... Xn) = XlX4_7x8 + XlX4X6X7X8 + XlX3 + XlX2

and for the contrast feature,

f(xl ..... Xn) = Xl + x2 + x3 •

Figure 2(b) and Figure 2(d) show the segmented images obtained from the entropy and

contrast feature images, respectively. These results also show a great improvement over the

segmentation using the original image.
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Clustering Methodologies

The best way to describe the new work in this task is to include a copy of a

manuscript recently submitted by Dr. Krishnapuram and Dr. Keller to the IEEE

Transactions on Fuzzy Systems.

The title of the paper is:

"A Possibilistic Approach to Clustering"

This represents a radical new approach to the theory and practice of fuzzy

clustering.



A Possibilistic Approach to Clustering

Raghu Krishnapuram and James M. Keller

Department of Electrical and Computer Engineering

University of Missouri, Columbia, MO 65211

Abstract

Clustering methods have been used extensively in computer vision and pattern recognition.

Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in that

total commitment of a vector to a given class is not required at each iteration. Recently fuzzy

clustering methods have shown spectacular ability to detect not only hypervolume clusters, but also

clusters which are actually "thin shells", i.e., curves and surfaces. Most analytic fuzzy clustering

approaches are derived from Bezdek's Fuzzy C-Means (FCM) algorithm. The FCM uses the

probabilistic constraint that the memberships of a data point across classes sum to one. This

constraint was used to generate the membership update equations for an iterative algorithm.

Unfortunately, the memberships resulting from FCM and its derivatives do not correspond to the

intuitive concept of degree of belonging, and moreover, the algorithms have considerable trouble in

noisy environments. In this paper, we cast the clustering problem into the framework of possibility

theory. Our approach is radically different from the existing clustering methods in that the resulting

partition of the data can be interpreted as a possibilistic partition, and the membership values may

be interpreted as degrees of possibility of the points belonging to the classes. We construct an

appropriate objective function whose minimum will characterize a good possibilistic partition of the

data, and we derive the membership and prototype update equations from necessary conditions for

minimization of our criterion function. We illustrate the superiority of the resulting family of

possibilistic algorithms (particularly in the presence of noise) with several examples.



I. Introduction

Clustering has long been a popular approach to unsupervised pattern recognition [ 1]. It has

become more attractive with the connection to neural networks [2,3,4], and with the increased

attention to fuzzy clustering [5,6,7,8]. In fact, recent advances in fuzzy clustering have shown

spectacular ability to detect not only hypervolume clusters, but also dusters which are actually

"thin shells", i.e., curves and surfaces [8,13]. One of the major factors that influences the

determination of appropriate groups of points is the "distance measure" chosen for the problem at

hand. Fuzzy clustering has been shown to be advantageous over crisp (or traditional) clustering in

that total commitment of a vector to a given class is not required at each iteration.

Most analytic fuzzy clustering approaches are derived from Bezdek's Fuzzy C-Means

(FCM) algorithm [14]. The FCM uses the probabilistic constraint that the memberships of a data

point across classes must sum to one. This constraint came from generalizing a crisp C-Partition of

a data set, and was used to generate the membership update equations for an iterative algorithm.

These equations emerge as necessary conditions for a global minimum of a least-squares type of

criterion function. Unfortunately, the resulting memberships do not represent one's intuitive notion

of degrees of belonging, i. e., they do not represent degree_ of "typicality" or "possibility".

The following simple examples illustrate the problems associated with the probabilistic

constraint as related to clustering. Consider the two clusters shown in Figure l(a) with two

outlying points A and B. Intuitively point A, being an oudier, should not have a high degree of

membership in either cluster. Point B should have an even smaller membership in either cluster,

because it only vaguely represents either one of them. Yet, the FCM assigns a membership of 0.5

in the two clusters to both of them. Thus, the membership values are not only unrepresentative of

the degree of belonging, but they cannot distinguish between a moderate outlier and an extreme

outlier. Figure l(b) represents another situation where there are two intersecting clusters. Here

again, the probabilistic constraint in the FCM updates would force a membership of 0.5 in the two

clusters to both point A and point B. This is again counterintuitive since point A is a "good M



memberof bothclusters,whereas point B is a "poor" member. These situations arise because the

probabilistic memberships cannot distinguish between "equal evidence" and "ignorance". More

recent theories such as belief theory [15] and possibility theory [16,17] have tried to correct this

problem. Zadeh suggested that membership functions of fuzzy sets can be interpreted as possibility

distributions [18].

There is another important motivation for using possibilistic memberships. Like all

unsupervised techniques, clustering (crisp or fuzzy) suffers from the presence of noise in the data.

Since most distance functions are geometric in nature, noise points, which are often quite distant

from the primary clusters, can drastically influence the estimates of the class prototypes, and

hence, the final clustering. Fuzzy methods ameliorate this problem when the number of classes is

greater than one, since the noise points tend to have somewhat smaller membership values in all the

classes. However, this difficulty still remains in the fuzzy case, since the memberships of

unrepresentative (or noise) points can still be significantly high. In fact, if there is only one real

cluster present in the data, there is essentially no difference between the crisp and fuzzy methods.

The prototype parameters (such as the center and orientation) and properties of the cluster (such as

hypervolume) can be greatly affected by the noise in the data. Recently, Dave has suggested a

heuristic method to improve the performance of the FCM algorithm and its derivatives in the

presence of noise by including a noise cluster [19]. Although the results shown are good, this

method introduces an artificial class and still suffers from the drawbacks due to the probabilistic

constraint. His algorithm, for example, would assign a membership of about 0.5 in both classes to

point A in Figure 1(b).

On the other hand, if a set of feature vectors is thought of as the domain of discourse for a

collection of independent fuzzy subsets, then there should be no constraint on the sum of the

memberships. The only real constraint is that the assignments do really represent fuzzy

membership values, i.e., they must lie in the interval [0,1]. In this paper we cast the clustering

problem into the framework of possibility theory. Our approach is fundamentally different from the
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existing clustering methods in that the resulting partition of the data can be interpreted as a

possibilistic partition, and the membership values may be interpreted as possibility values, or

degrees of typicality of the points in the classes. This is more in keeping with the concept of

membership functions in fuzzy set theory. The possibilistic C-partition defines C distinct

(uncoupled) possibility distributions (and the corresponding fuzzy sets) over the universe of

discourse of the set of feature points. Thus, our approach is intrinsically fuzzy, in the sense that the

memberships are not "hard" even when there is only one class in the data set. In section II, we

construct an appropriate objective function whose minimum will characterize a good possibilistic

partition of the data, and we derive the membership and prototype update equations from necessary

conditions for minimization of our criterion function. These equations lead to an entirely new

family of possibilistic clustering algorithms. In section III, we illustrate the superiority of the

resulting family of possibilistic algorithms (particularly in the presence of noise) with several

examples. Finally, section IV gives the summary and conclusions.

II. Possibilistic Clustering Algorithms

The original FCM formulation minimizes the objective function given by

C N C

= ]_ _1 (u")'n d_ subject to ]_ lzij = 1 forallj. (1)J (L,U) i = 1 j = "-q" " i= 1

In (1L L = (X 1..... _,¢) is a C-tuple of prototypes, 4" is the distance of feature point xj to cluster

Ai' N is the total number of feature vectors, C is the number of classes, and U = [laij] is a C xN

matrix called the fuzzy C-partition matrix [14] satisfying the following conditions:
C

_ij _ [0,1] for all i and j, i_l /.lij =1 forallj, and

N
O< _U._. <N for alli.

]=1

Here. ldij is the grade of membership of the feature point xj in cluster _i, and m e [ 1,_) is a

weighting exponent called the fuzzifier. In what follows, _i will also be used to denote the ith

cluster, since it contains all of the parameters that define the prototype of the cluster.
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Simply relaxing the constraint in (1) produces the trivial solution, i. e., the criterion

function is minimized by assigning all memberships to zero• Clearly, one would like the

memberships for representative feature points to be as high as possible, while unrepresentative

points should have low membership in all clusters. This is an approach consistent with possibility

theory [ 16]. The objective function which satisfies our requirements may be formulated as:

C N C N

= _-_ _-_ (IAiJ)md2" _1 _1 (1--///J)m (2)Jm(L'U) i= l j= l ij + i= lli j= "

where r/i are suitable positive numbers. The first term demands that the distances from the feature

vectors to the prototypes be as low as possible, whereas the second term forces the/.tij to be as

large as possible, thus avoiding the trivial solution. The choice of r/i will be discussed later.

Theorem:

Suppose that X = {x 1, x 2 ..... XN} is a set of feature vectors, L = (_'1 ..... _.¢) is a

C-tuple of prototypes, dij is the distance of feature point xj to the cluster prototype _i, (i = 1,

.... C; j = 1..... N), and U = _ij] is a C xN matrix of possibilistic membership values. Then U

[ -1
• The necessary

may be a global minimum for Jm(L,U) only if #ij = 1 + Tli

conditions on the prototypes are identical to the corresponding conditions in the FCM and its

derivatives.

Proof:

In order to derive the necessary conditions and the membership updating equations, we

f'trst note that the rows and columns of U are independent of each other. Hence, minimizing

Jm(L,U) with respect to U is equivalent to minimizing the following individual objective function

with respect to each of the #.tij (provided that the resulting solution lies in the interval [0,1]).

jiJm(Zi,lAi j ) = iAijrn _ + rli (1-lAij)'n " (3)

Differentiating (3) with respect to IAij and setting it to zero leads to the equation
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///)
I (4)

Z
l+

Oi/

It is obvious from (4) that I.tij lies in the desired range. Since the newly added second term in the

objective function is independent of the prototype parameters and the distance measure, the

derivative of our new criterion function with respect to those parameters will be identical to that for

the FCM or the appropriate generalization. QED

Thus, in each iteration, the updated value of lai.i depends only on the distance of xj. from

Ai, which is an intuitively pleasing resulL The membership of a point in a cluster should be

determined solely by how far it is from the prototype of the class, and should not be coupled to its

location with respect to other classes. The updating of the prototypes depends on the distance

measure chosen, and will proceed exactly the same way as in the case of the FCM algorithm and its

derivatives, as will be explained shortly.

It is apparent from (4) that the constraints satisfied by the possibilistic C-partition are
N

-_.lu _ [0,1] for all i and j, and 0 < l_- lliJ < N for all i../=

Eq.(4) defines a possibility distribution (membership) function for cluster Ai over the domain of

discourse consisting of all feature points xj. We denote this distribution by Hi. The value of m

determines the fuzziness of the final possibilistic C-partition and the shape of the possibility

distribution. When m---_l, the membership function is hard, and when m----)_, the memberships are

maximally fuzzy. A value of 2 for m (which seems to give good results in practice), yields a very

simple equation for the membership updates.

The value of rIi determines the distance at which the membership value of a point in a

cluster becomes 0.5 (i. e., "the 3 dB point"). Thus, it needs to be chosen depending on the desired

"bandwidth" of the possibility (membership) distribution for each cluster. This value could be the

same for all clusters, if all clusters are expected to be similar. In general, it is desirable that r/i



relatesto the overall sizeandshapeof clusterXi. Also, it is to be noted that r/i determines the

relative degree to which the second term in the objective function is important compared to the first,

If the two terms are to be weighted roughly equally, then rli should be of the order of d2iy. In

practice we f'md that the following definition works best.
N

j=l
_i = • N

2.:
y=l

(5)

This choice makes r/i the average fuzzy intra-cluster distance of cluster ,'_i. The following rule

may also be used.

xi _ (/7i)_ _J (6)r/i =

where (/-/i)ct is an appropriate a-cut of Hi. In this case, rli is the average intra-cluster distance for

all of the "good" feature vectors (those vectors whose memberships are greater than or equal to t_).

The value of/']i can be tLxed for all iterations, or it may be varied in each iteration. When/7i

is varied in each iteration, care must be exercised, since it may lead to instabilities. Our experience

shows that the final clustering is quite insensitive to lar_ (an order of magnitude) variations in the

values of r/i, although the final shapes of the 17i do depend on the exact values of r/i. Thus, the

best approach is to compute approximate values for the rli based on an initial fuzzy partition using

(5), and after the algorithm converges, recompute more accurate values for the rli using (6) and

run the algorithm for the second time. The second run typically converges in a couple of iterations.

This is only necessary if the actual values of class memberships are required. If only the relative

degree of strength is needed (for example, to generate parameters for the cluster or to produce a

hard partition), then this final step can be omitted. The second pass through the algorithm with

refined values for rli allows the resultant memberships in a noisy environment to be nearly



identicalto thoseobtainedin a noise-freestate.Any value of a between 0.1 and 0.4 seems to yield

consistent results.

We propose a family of possibilistic clustering algorithms whose general form is as

follows.

THE POSSIBILISTIC CLUSTERING ALGORITHM:

Fix the number of clusters C; fix m, 1 < m < oo;

Set iteration counter l = 1;

Initialize the possibilistic C-partition U (°)

(using a suitable fuzzy clustering algorithm);

Estimate r/i using (5);

Repeat

Update the prototypes using U (l), as indicated below;

Compute U(/+1) using (4);

Increment l ;

Until (II U (1"1) - U (I) II < e);

{Reestimate r/i using (6) and rerun the repeat loop if required}

The updating of the prototypes depends on the distance measure chosen. Different distance

measures lead to different algorithms. If the distance is an inner product induced norm metric as in

the case of the FCM algorithm, i. e., if do2 = (xj-ci)TAi (xj-ci) where ci is the center of cluster 2i,

updating of the prototype is achieved by [14]
N

j=l
Ci- N

j=l

(7)

This gives us the Possibilistic C-Means (PCM) algorithm. If the distance measure is the scaled

Mahalanobis distance [6,7,20], i. e., if if d 2. = IFillln(xj-ci)TFi'l(xj-ci), where Fi is the fuzzy

covariance matrix of cluster &i = (ci, Fi ) then the center ci is still updated using (7), and the

fuzzy covariance matrix is updated using



N

___[.1_ (Xj-Ci)(Xj'Ci) T

j=l (8)
Fi = N

This gives us the Possibilistic C-Planes (PCP) algorithm. In the ease of spherical shell clusters

[9,13], one possible distance measure is dq 2 = d2(xj,Zi ) = (llxj - c i It2- ri2) 2, where c i is the center

and ri is the radius of cluster X/, and the updating of the prototypes is given by
1

Pi = "2 (Hi) "lwi" (9-a)

where
N /¢

Pi=[ JcTci-r_ "tti=_]=l'ftijlXJl ] IXJl ] T'andwi=2_l '12ij (xTxj)I _ ].(9-b)

The resulting algorithm may be called the Possibilistic C-Spherical Shells (PCSS) algorithm. A

Possibilistic C-Quadric Shells (PCQS) algorithm [12,21] may also be defined similarly.

III. Examples of Possibilistic Clustering

In this section, we show several examples of possibilistic clustering to illustrate the ideas

presented in the previous section. We first present a simple example to provide insigh_ into the

possibilistic approach. We then present more realistic examples, and compare the performance of

the possibilistic clustering with those of the corresponding hard alg,orithms, and those of FCM and

its derivatives.

The first example involves two well-separated clusters of seven points each. In this case,

the hard C-Means algorithm, the FCM algorithm, and the PCM algorithm all give the same final

crisp partition shown in Figure 2(a). The crisp partition for the lqZM and PCM are obtained by

assimaing each feature vector to the cluster in which it has the highest membership. Ties _de broken

arbitrarily. The cluster centers in all three cases are the same. The membership values for the FCM

and PCM cases are shown in Table 1. The feature vectors are numbered in the order in -ahich they



would be encountered in a top to bottom, left to right scan of the image shown in Figure 2(a). It

can be seen that the FCM memberships are almost hard (i. e., they are close to 1 or 0) in every

case. This may be desirable if a hard partition is required, but the memberships do not differentiate

between close and far members of the clusters. On the other hand, the PCM algorithm provides

more graded membership values, and these membership values are more in keeping with one's

intuitive notion of belonging. Note that the farther away the feature vector is to the typical member

(i. e., the prototype), the smaller the membership. As we noted in the previous section, the rate of

fail of the membership values can be adjusted depending on the choice of rli. However, this has

virtually no effect on the final clustering obtained. We chose to keep the computation of r/i the

same for all examples, and this was done as explained in the previous section.

Figures 2(b), 2(c), and 2(d) show the final crisp partition obtained due to the hard C-

Means, FCM, and PCM algorithms respectively, when two noise points are added to the set of

feature vectors shown in Figure 2(a). The hard C-Means algorithm actually puts the farthest noise

point as one cluster, and lumps all the rest into another cluster, although this may depend on

initialization. The crisp partitions of the FCM and PCM are identical, however, the membership

values and the cluster centers obtained are considerably different, as can be seen in Table 2. The

first two entries in the table correspond to the two noise points, and the FCM algorithm gives

approximately equal memberships of 0.5 in both clusters for the noise points. This significantly

affects the estimates of the cluster centers, as can be seen in the table. The PCM algorithm, on the

other hand, gives very low memberships for the two noise points in either cluster, and the farther

point has a lesser membership than the closer one, as desired. As a result, the cluster centers are

virtually unchanged. The membership values of the points in each of the clusters is also virtually

unchanged in spite of the addition of the noise points. In fact, the memberships will not change

even if an entire new cluster of feature points is added to the data set. This is a highly desirable

result, especially if the clustering algorithm is to be used to estimate membership distribution

functions for the various classes.
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Figure 3 showsa more realistic examplewith two classes.Eachclasshas25 feature

vectors in the noise-freecase.Thesepoints were generatedwith a Gaussianrandom number

generator. Figure 3(a) shows the clustering obtained by the Hard C-Means, Fuzzy C-Means, and

Possibilistic C-Means algorithms. The crisp partitions are identical. Figures 3(b), 3(c) and 3(d)

show the crisp partition resulting from the Hard C-Means, Fuzzy C-Means, and Possibilistic C-

Means algorithms when the data from class 2 (the lower class) are noisy. The crisp partition due to

the Hard C-Means is quite miserable, and the crisp partition due to the Fuzzy C-Means is not

satisfactory either. The performance of the possibilistic C-Means is quite acceptable. The cluster

centers for the three methods for the noise-free and noisy cases are shown in Table 3. As can be

seen, the center estimates are poor in the cases of the Hard and Fuzzy C-Means algorithms.

Figure 4 shows an example involving linear clusters. Figure 4(a) shows the clustering due

to the Hard C Planes (HCP) [22,23], Fuzzy C Planes(FCP) [6,7], and Possibilistic C Planes

(PCP) algorithms. The final estimates of the prototypes are shown superimposed on the original

data set. The results are identical when there is no noise. Figure 4(b), 4(c), and 4(d) show the

results of the HCP, FCP, and PCP algorithms respectively, when noise is added. As can be seen,

the results of both the HCP and the FCP algorithms are quite poor. However, the results of the

PCSS algorithm are virtually the same as those of noise-free case.

The fourth example involves the detection of circles. Figure 5(a) shows the original data set

with two circles. Figure 5(b), 5(c), and 5(d) show the results of the Hard C Spherical Shells

HCSS [13], Fuzzy C Spherical Shells (FCSS) [9,13], and Possibilistic C Spherical Shells (PCSS)

algorithms respectively, with the final estimates of the prototypes superimposed on the original

data set. As can be seen, the results of the HCSS algorithm are very poor. (They correspond to a

local minimum). The FCSS and PCSS algorithms give the same results in this case. Figure 6

shows the results of the same data set when noise is added. The performance of the HCSS

algorithm is again unacceptable. The FCSS algorithm performs better, however, the estimates of
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thecentersandtheradii sufferfrom thepresenceof noise. The results of the PCSS algorithm are

virtually unaffected by noise.

The greatest difference between the FCM-based and PCM-based algorithms is for the case

where there is but one cluster in the data set. In this case there is essentially no difference between

the FCM-based methods and hard methods. Figure 7 illustrates this idea. Figure 7(a) and 7(c)

show the estimates of the prototype parameters for a noisy line and a noisy circle when the FCP

and FCSS algorithms are used. The estimates are severely affected by noise. Fibres 7(b) and 7(d)

show the clearly superior estimates with the PCP and PCSS algorithms.

IV. Conclusions

In this paper, we present a possibilistic approach to objective-function-based clustering.

We argue that the existing fuzzy clustering methods do not provide intuitively appealing

membership values due to the fact that an inherendy probabilistic constraint is used. As a result,

membership of a feature vector in a cluster depends not only on where the feature vector is located

with respect to the cluster, but also on how far away it is with respect to odaer clusters. This

"conservation of total membership" law forces the memberships to be spread across the classes,

and thus makes them dependent on the number of clusters present. The resulting membership

values cannot always distinguish between good members and poor members. This situation arises

because probabilistic membership values cannot distinguish between "equally likely" and

"unknown". On the other hand, if one takes the possibilistic view that the membership of a feature

vector in a class has nothing to do with its membership in other classes, then we can achieve more

realistic membership distributions. Our possibilistic approach to clustering is ba_,ed on this idea.

Since our membership functions correspond more closely to the notio_a of typicality, the

resulting algorithms are naturally more immune to noise. Thus, our approach is intrinsically fuzzy,

since the memberships are not "hard" even when there is only one class in the data set. This is

compatible with the fuzzy set theoretic notion of membership functions. The F-artition of the data
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resulting from our approachcanbe interpretedasa possibilisticpartition, andthe membership

valuesmaybeinterpretedaspossibilityvalues,or degreesof typicality of thepointsin the classes.

The possibilistic C-partition defines C distinct (uncoupled) possibility distributions (and the

corresponding fuzzy sets) over the universe of discourse of the set of feature points. Therefore, the

family of algorithms we propose can be used to estimate possibility distributions direcdy from

training data. Currently there are no good algorithms to estimate possibility distributions directly

from training data, other than those that do so by converting probabilities to possibilities [24,25].

This conversion does not yield very appropriate results when the FCM-based memberships are

used, since the memberships do not have a frequency interpretation, and since the memberships

have already lost the distinction between "equally highly likely" and "equally highly unlikely". The

possibilistic approach has the added advantage of being a natural mechanism to assign "fuzzy

labels" to training data for use in more sophisticated pattern recognition algorithms. Finally, we

would like to point out that the possibilistic algorithms may be viewed as a generalization of the

weighted least squares approaches [26] and robust parameter estimation methods [27], which have

been used with good results in computer vision [28,29].
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Table 1:Membershipsandcentersresultingfrom theFCMandPCMvaluesfor thenoise-freedata

setshownin Figure2(a).

1
2
3
4
5
6
7
8
9
10
11
12
13
14

centers

Fuzzy C-Means
Cluster 1 Cluster 2

0.996 0.004
0.004 0.996
0.988 0.012
0.997 0.003

1.000 0.000
0.996 0.004
0.980 0.020
0.020 0.980
0.004 0.996
0.000 1.000
0.003 0.997
0.012 0.988
0.996 0.004
0.004 0.996

(60.0, 150.0) (140.0, 150.0)

Possibilistic C-Means

Cluster 1 Cluster 2

0.632 0.007
0.007 0.632

0.300 0.005
0.631 0.006
1.000 0.007
0.632 0.008
0.300 0.009
0.009 0.300
0.008 0.632
0.007 1.000
0.006 0.631

0.005 0.300
0.632 0.007
0.007 0.632

(60.0, 150.0) (140.0, 150.0)
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Table2: Membershipsandcentersresultingfrom theFCM andPCMvaluesfor thenoisydataset

shownin Figures2(c)and2(d).

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

centers

Fuzzy C-Means
Cluster 1 Cluster 2

0.499 0.501
0.498 0.502
0.999 0.001
0.001 0.999
0.977 0.023
0.989 0.011
0.996 0.004
0.994 0.004
0.985 0.015
0.015 0.985
0.004 0.996
0.004 0.996
0.011 0.989
0.023 0.977
0.985 0.015
0.015 0.985

(62.8,145.9) (137.2,145.9)

Possibilistic C-Means
Cluster 1 Cluster 2

0.004 0.004
0.017 0.017
0.636 0.007
0.007 0.636

0.299 0.005
0.626 0.006
1.000 0.007

0.644 0.008
0.307 0.009
0.009 0.307
0.008 0.644
0.007 1.000
0.006 0.626
0.005 0.299
0.634 0.007
0.007 0.634

(60.0,150.0) (139.9,150.0)

Table 3: The estimates of centers using the HCM, FCM and PCM algorithms

No

noise

With
noise

Hard C-Means

(102.0, 88.4) (81.9, 118.5)

(92.2, 103.8) (46.7, 155.8)

Fuzzy C-Means

(102.0, 87.5) (82.3,118.1)

(96.4, 95.8) (66.2, 139.4)

Possibilistic C-Means

(101.7, 87.9) (82.4, 117.4)

(98.7, 93.9) (86.4, 112.6)
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Figure1:

Figure 2:

Figure 3:

Figure 4:

List of Figures

(a) Example of a data set with two noise points A and B in which the memberships

of the noise points resulting from the FCM algorithm in both clusters are about

0.5, even though point B is much less representative of either cluster than point A.

(b) Example of a data set with two intersecting clusters in which the memberships

of the points A and B resulting from the FCM algorithm in both clusters are about

0.5, even though point A is a "good" member of both clusters and point B is a

"poor" member of both clusters.

Results on a simple data set: (a) The crisp partition resulting from the HCM, FCM

and PCM algorithms. (b) The crisp partition from the HCM algorithm, when noise

is added. (c) The crisp partition from the FCM algorithm, when noise is added. (d)

The crisp partition from the PCM algorithm, when noise is added.

Results on a data set generated by a Gaussian random number generator: (a) The

crisp partition resulting from the HCM, FCM and PCM algorithms. (b) The

crisp partition from the HCM algorithm, when noise is added. (c) The crisp

partition from the FCM algorithm, when noise is added. (d) The crisp partition

from the PCM algorithm, when noise is added.

Estimation of parameters of lines (The lines generated from the estimated prototype

parameters are superimposed on the original data set): (a) Parameter estimates

obtained with the HCP, FCP and PCP algorithms when no noise is present. (b)

Parameters obtained with the HCP algorithm when noise is added. (c) Parameters

obtained with the FCP algorithm when noise is added. (d) Parameters obtained with

the PCP algorithm when noise is added.

19



Figure5:

Figure6:

Figure7:

Estimationof parametersof circleswhennonoiseispresent(Thecirclesgenerated

fromtheestimatedprototypeparametersaresuperimposedon theoriginaldataset):

(a)Original dataset.(b)Parameterestimatesobtainedwith theHCSSalgorithm.(c)

Parameterestimatesobtainedwith theFCSSalgorithm.(c)Parametersobtained

with thePCSSalgorithm.

Estimationof parametersof circlesin noise(Thecirclesgeneratedfrom the

estimatedprototypeparametersaresuperimposedon theoriginaldataset):(a)

Originaldataset.(b)Parameterestimatesobtainedwith theHCSSalgorithm.(c)

Parameterestimatesobtainedwith theFCSSalgorithm.(c) Parametersobtained

with thePCSSalgorithm.

Estimationof prototypeparametersin noisewhenonly oneclusteris present:(a)

Lineparametersobtainedwith theFCPalgorithm.(b) Lineparametersobtained

with thePCPalgorithm.(c)Circle parametersobtainedwith theFCSSalgorithm.

(d)Circleparametersobtainedwith thePCSSalgorithm.
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Pose Estimation Using the UCOS algorithm

In some cases, the Unsupervised C Quadric Shells (UCQS) algorithm can be used

to estimate the pose of the shuttle. The shuttle's image is taken from the back so that the

exhaust nozzles and the back edges of the three wings are apparent. Given an original

unrotated image, the exhaust nozzles can be parametrized by three circles, and the three

wings can be parametrized by three straight lines. These parameters are easily determined

by the UCQS algorithm. As the shuttle mutes, the shape of the nozzles will change from

circles to ellipses, so will the orientation of the straight lines representing the three wings.

The UCQS algorithm is used in order to cluster this edge image and determine the

parameters of the ellipses and lines. Finally, these parameters can be used to solve for the

translation and rotation parameters, as long as the translation is made in the image plane. In

fact, depth information can also be derived from the change in the size of the nozzles.

The (UCQS) algorithm was used to cluster edge images of the back of shuttle

model. See figures C-1 through C-3. Fig.C-1 shows an image of the unrotated shuttle (the

reference position), and Fig.C-2 and C-3 show images of the rotated shuttle. In all the

figures, Fig.a shows the original gray level image taken of the back of the shuttle. Fig.b

shows the corresponding edge image, and Fig.c shows the prototypes of the clusters found

by the (UCQS) algorithm. The (UCQS) algorithm not only is able to cluster the image

correctly, but it also determines the parameters of each cluster.

The equation of a quadric shell in the 2-D case (quadratic curve) can be written as

follows:
2 2

al x 1 +a2x 2 +a3 Xl x2 +a4 Xl +a5 x2 +a6 =0.

This equation can also be written as



xtA x +xtv +d = 0.

wherex is thefeaturevector(Xl, x2)t, andtheparametersof theclusterare:A which is a

2x2 matrix, v which is 2-element vector and d which is a real number. The (UCQS)

algorithm finds these parameters for figures C-1 through C-3, and they are tabulated in

tables C-1 through C-3.

Table.C-1

cluster v d

-150.8] 12517.1
-124.8.1

-89.3 ] 9454.9
-130.4,1

3878.5

A

-0.7390.034"
1 _0.0340.672.

[O_ 0.003"0.573.

"0.765 0.014"
3 _0.014 0.644.

-0.0 0.0
4 _0.0 0.0.

"0.997 0.038"
5 _0.038 0.06.

-0.0 0.0"
6 _0.0 0.0.

"0.629 -0.246]
7 _-0.246 0.695 _1

-0.0 0.0"
8 _0.0 0.0.

-0.567 0.137-
9 .0.137 0.801_

10 [0:0 0.0"0.0.

-0.0 0.0
11 _0.0 0.0.

-0.006] -89.9
0.99 1

3238.9[:117.9 ]
0.99 1
0.004,1

-43.6

-111.9] 5893.1
-10.2 -1

0.99 ] -27.6
-0.022,1

-148.4] 21186.7
-226.5,1

-0.019] -79.50.99 ,1

0.99 ] -76.9
0.004,1



Table.C-2

cluster A v d

ro.688 o.o27- r-177.21 18155.9
1 LO.O27 0.725_ L-149.81

2 7840.2

3

4

5

0.750
-0.058

"0.759
.-0.003

[%o
[o:o

-0.058"
0.656 _

-0.003"
0.650 _

o:o]
0.0"
0.0.

-122.4]
-80.9 I

-133.9]
-160.5.1

0.99 ]
-O.OlJ

0.0041
0.99 J

15_1.5

-33.3

-92.7

Table.C-3

cluster

2

A

-0.817 -0.065
_-0.065 0.569

-0.806 0.031"]
.0.031 0.591_1

0.864 0.026
0.026 0.503

-187.4]
-57.9 J

[:199-51140.61

d

12838.2

19588.9

3 24515.2

4 -0.0 0.0_0.0 0.0] [0099 ] -74.3
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Acquisition of Images

We have digitized several frames from a promotional video tape on the space

program. The example which was presented in the feature calculation section is one of

those images. In addition, we have constructed a device to hold a model of the space shuttle

at a known orientation so that we can digitize it for the "pose estimation" research. We have

shown several examples of those images in an earlier report. The report on camera

calibration is included. These calabration equations are necessary to accurately determine

the pose parameters for the model as they appear in an image.

Recently, we have received a tape from Lincom with many simulated shuttle images

in different orientations. We are in the process of devising experiments utilizing these

images.

Finally, we have arranged to borrow several video tapes of shuttle missions from

the NASA library (we only recently found out such a facility existed). These, we hope, will

supply us with a good set of real images to test our algorithms.



Camera Calibration

The most direct way in obtaining the image coordinates (x,y) of a world point w is

to apply the set of matrix equations defining the various parameters of the camera. These

parameters are the focal length, offsets, and angles of pan and tilt. The mentioned

parameters could be measured directly, or we could use the camera as a measuring device

to estimate the parameters. This technique is know as camera calibration.

The advantage of such a technique is that it eliminates the need to keep on

recalibrating the camera when the camera is moved.

Procedure:

Define a matrix A containing all the camera parameters:

m_

all a12 al 3 a14

a21 a22 a23 a24

a31 a32 a33 a34

a41 a42 a43 a44

Let W be a point in the Cartesian world coordinate system



Thehomogeneouscounterpartis definedas

[kx]kY

Wh = kZ

k

system

Let C represent the Cartesian coordinates of any point in the camera coordinate

C Ix]y =

Z

m

kx

(k-z)

or the corresponding homogeneous image plane vector form

[kx]ky

Ch=
0

k



Lettingk=l wecanwrite

- Ch1

Ch2

Ch3

_ Ch4

all a12 a13 a14

a21 a22 a23 a24

a3! a32 a33 a34

an1 a42 a43 ann

X m

Y

Z

The camera coordinates in Cartesian form are given by

Chl Ch2
x= ; y-

Ch4 Ch4

We substitute them into the above equations. After expanding we receive

XCh4= a11X +a12 Y+ al3Z + a14

YCh4 = a21X + a22Y + a23Z + a24

Ch4 = a41X + a42Y + a43Z + a44


